## SCRIPT TO TEST THE PACKAGE FUNCTIONS
library(SPATFunctions)
# Note: using built-in data set of environmental covariates
head(SPATData_EnvCov)
# Calculate correlation matrix of raw data (excluding first column with years)
M <- calcCorrMatrix(SPATData_EnvCov[,-1])
head(M$cor.mat)
# plot correlation matrix
plotCorrMatrix(M$cor.mat) # original order of variables
plotCorrMatrix(M$cor.mat,order="clustered",n.groups=4) # clustered by correlation
plotCorrMatrix(M$cor.mat,order="clustered",n.groups=round(dim(M$cor.mat)[1]/3))
round(dim(M$cor.mat)[1]/3)
plotCorrMatrix(M$cor.mat,order="clustered",n.groups=4,plot.type = "color")
plotCorrMatrix(M$cor.mat,order="clustered",n.groups=4,plot.type = "number")
plotCorrMatrix(M$cor.mat,order="clustered",n.groups=4,plot.type = "circle")
# repeat, with modified data:
# - shift (offset) the pdo variable by 2 years (just as an illustration, this is not meaningful)
# - transform all variables to z-score (i.e. normalize)
head(SPATData_EnvCov)
data.shifted <- shiftSeries(SPATData_EnvCov, offsets=c(0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,rep(0,18)))
head(data.shifted)
data.z <- transformData(data.shifted,type="z-score",
cols=names(data.shifted)[names(data.shifted)!="yr"],
zero.convert = NA )
head(data.z)
M.z <- calcCorrMatrix(data.z[,-1])
plotCorrMatrix(M.z$cor.mat) # original order of variables
plotCorrMatrix(M.z$cor.mat,order="hclust",n.groups=4)
# pairwise correlations (cumulative and by time window)
vars.test <- c("EC_jflow","EC_pdo")
plotPair(SPATData_EnvCov[,c("yr",vars.test)],layout = "single")
plotPair(data.z[,c("yr",vars.test)],layout = "2panels")
running.corr <- comPair(SPATData_EnvCov[,c("yr",vars.test)],
window = 12,plot.type="print")
running.corr
running.corr.z <- comPair(data.z[,c("yr",vars.test)],
window = 12,plot.type="print")
running.corr.z
running.corr.z <- comPair(data.z[,c("yr",vars.test)],
window = 12,plot.type="shiny")
print(running.corr.z$plot)
# plotly testing
library(plotly)
dim(drop_na(SPATData_EnvCov))
test <- plotPair(SPATData_EnvCov[,c("yr",vars.test)],layout = "single",plot.type = "shiny")
print(test)
plotPair(SPATData_EnvCov[,c("yr",vars.test)],layout = "2panels",plot.type = "shiny")
plotPair(SPATData_EnvCov[,c("yr",vars.test)],layout = "2axes",plot.type = "shiny")
####################
group.out <- plotGroup(SPATData_EnvCov[,1:5],agg.idx="median",plot.type="print")
names(group.out)
group.out <- plotGroup(SPATData_EnvCov[,1:5],agg.idx="mean",plot.type="shiny")
names(group.out)
group.out$plot
group.out$agg.idx
group.out <- plotGroup(SPATData_EnvCov[,1:5],agg.idx="none",plot.type="shiny")
names(group.out)
group.out$plot
group.out$agg.idx
group.out <- plotGroup(SPATData_EnvCov[,1:5],agg.idx="mean",plot.type="shiny",idx.label = "Mean1to5")
names(group.out)
group.out$plot
group.out$agg.idx
##################
# OTHER PLOTS
plotBoxes(list.in = list(Var1 = rnorm(200,100,1),Var2 = rnorm(200,0.5,3)))
tmp.dat <- SPATData_EnvCov %>% select(RpEff_ESum_Gate,RpEff_ESum_Nadi)
scatter.spark <- function(x,y){
par(new = TRUE)
x.vec <- unlist(x)
y.vec <- unlist(y)
plot(x.vec,y.vec,bty="n",axes=FALSE,pch=21,col="darkblue",xlab="",ylab="",cex=0.8,bty="n")
abline(lm(y.vec~x.vec),col="red")
}
scatter.spark(tmp.dat[1],tmp.dat[2])
scatter.spark2 <- function(x,y){
par(new = TRUE)
x.vec <- unlist(x)
y.vec <- unlist(y)
plot(x.vec,y.vec,bty="n",axes=FALSE,type="n",bty="n")
abline(lm(y.vec~x.vec),col="red",lwd=3)
}
dens.spark <- function(x){
par(new = TRUE)
dens <- density(unlist(x),na.rm=TRUE)
plot(dens$x,dens$y,type="l",col="darkblue")
#lines(dens$x,dens$y,type="l",col="white")
}
dens.spark(tmp.dat[1])
pairs(tmp.dat,
lower.panel = scatter.spark ,
upper.panel = scatter.spark2,
diag.panel = dens.spark
)
plotSPLOM(SPATData_EnvCov[,2:5])
library(SPATFunctions)
test <- plotRanked(log(SPATData_EnvCov[,16:33]),trim = 5,maxvars=NULL,flag=names(SPATData_EnvCov)[19])
test
test <- plotRanked(log(SPATData_EnvCov[,2:5]),trim = 7,maxvars=NULL,flag=names(SPATData_EnvCov)[19])
test
plotScatter(SPATData_EnvCov[,c(1,3,4)], labels = NULL, colors = "fade",recent.window = 10)
######################
library(devtools)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.